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FOREWORD

‘This report is the result of a study on the buckling of segmental orthotropic
c¢ylinders under non-uniform axial compression. Work on this study was per-
formed by staff members of Lockheed Missiles & Space Company in cooperation
with the George C. Marshall Space Flight Center of the National Aeronautics
and Space Administration under Contract NAS 8-11480. Contract technical

representative was H. Coldwater.

This volume is the eighth of a nine-volume final report of studies conducted

by the department of Solid Mechanics, Aerospace Sciences Laboratory, Lockheed
Missiles & Space Company. Project Manager was K. J. Forsberg; E. Y. W. Tsui

was Technical Director and Professor D. 0. Brush of the University of California

at Davis was a Consultant for the work.

The nine volumes of the final report have the following titles:

Vol. I Numerical Methods of Solving Large Matrices

Vol. II Stresses and Deformations of Fixed-Edge Segmental Cylindrical
Shells

Vol. III Stresses and Deformations of Fixed-Edge Segmental Conical
Shells

Vol. IV Stresses and Deformations of Fixed-Edge Segmental Spherical
Shells

Vol. V Influence Coefficients of Segmental Shells

Vol. VI Analysis of Multicellular Propellant Pressure Vessels by the

Stiffness Method

Vol. VII Buckling Analysis of Segmental Orthotropic Cylinders under
Uniform Stress Distribution

Vol. VIII Buckling Analysis of Segmental Orthotropic Cylinders under
Non-uniform Stress Distribution

Vol. IX Summary of Results and Recommendations
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SUMMARY

This volume presents a solution to the buckling problem of orthotropic cylin-
drical panels under nanuniform axial compression. For such a case the
governing differential equations cannot be separated with respect to the space
variables and thus analytical solutions are not available. The total poten-
tial energy of the system is expressed in terms of the displacement components
and their derivatives. The energy formulation is transformed into a rational
function of the displacements at the mesh points of a finite-difference net.
The adjacent equilibrium theory of buckling is used to define the critical

load as the eigenvalue of a large matrix.
Due to the fact that the finite-d:ifference net has two dimensions, the degrees

of freedom of the system is very large. Possible methods of solutions are

therefore discussed with emphasis on computer economy.
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NOTATION

matrix

cross-sectional areas of stringer and ring
circumferential dimension of the panel
matrix

matrix

auxiliary functions

eccentricities of stringer and ring
moduli of elasticity of the shell, stringer, and ring

general notation for gquantities in the energy expression
[see Eq. (2.11)]

quantities of f at the mesh point i, j and their

derivatives
functions of x and 6

spacing between mesh points in axial direction

total number of mesh points along the generator

number of row and column in the mesh

torsional constancs for the cross-section of stringer and ring
spacing between mesh points along the curved edges

total number of mesh points along the curved edges

length of panel

matrix

nondimensionalized moments and stress resultants
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radius of panel

spacing of rings and stringers

thickness of skin

nondimensionalized strain energy of the system
nondimensionalized total potential energy

nondimensionalized mid-surface displacement components in

W, ¥, and Z directions
potential energy of external loads
curvilinear coordinates for thé mid-surface of the panel
vector of the displacement components u, v, w
vector of constant terms

nondimensional geometrical parameters of the given

structure
direct and shear strains
change of curvature or twist of mid-surface of panel
angle subtending the width of panel
angular coordinate

constant

eigenvalue
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Section 1
INTRODUCTION

When a cylindrical shell is subjected to an axially symmetrical load, the
coefficients in the linear differential equations governing shell buckling
are independent of the circumferential coordinate. Consequently the partial
differential equations can be separated with respect to the space variables
and the problem reduced to the solution of ordinary linear differential
equations. If in addition prebuckling stresses are independent of the axial
cQordinate the governing differential equations have constant coefficients and
an analytical solution is readily available. Analytical solutions can be
obtained for cylindrical panels as well as complete cylinders, provided they
are subjected to uniform longitudinal loading and simple support boundary

conditions are chosen either for the curved or for the straight edges.

Buckling of the cylindrical panels of multicellular tanks or interstapges was
studied in Vol. 7 of this report. For simplicity and economy in computer
analysis that investigation was restricted to panels subjected to uniform
loading and the curved edges were assumed to be simply supported. The stress
distribution in the cylindrical panels of multicellular structures, particu-
larly in fuel tanks, will certainly not be uniform, but the analysis of

Vol. 7 is still suitable for a study of the influence on the buckling load of
such parameters as stiffener eccentricity, panel width, and web plate bending
stiffness. Also it appears possible by use of engineering judgment to estab-
lish within reasonable limits an equivalent uniform stress distribution and

thus use the results directly for design purposes.

The present analysis considers cylindrical panels with non-uniform strcss
distributions, and its primary purpose is to serve as an aid in the establish-
ment of the equivalent uniform stress distribution. In this case the governing

partial differential equations are not separable, and the numerical solution is



somewhat unwieldy. Very few analyses of this type are available. TFor

-complete cylinders and a particularly simple case of non-uniform loading,

Ref. 1 employs successfully double Fourier series. HHowever, for the present
case it is believed that numerical results can be more easily obtained by
use of a two-dimensional finite-difference net. The number of mesh points
needed depends on the load distribution as well as on the buckling péttern.
Computers presently used.have sufficient storage capacity and short enough
instruction time that it may be practical to obtain solutions for complete
cylinders when the 1oading varies smoothly over the surface and when the
number of circumferential waves is moderate. For the relatively narrow
panels, which are typical for multicellular structures, the situation is
more favorable. It is expected that for stress distributions typical for

multicellular structures the required computer time will be reasonable.



Section 2
THEORY

By use of finite-difference approximations for the derivatives it is, of course,
Pbossible to transform the governing partial differential equations and the
boundary conditions into a set of‘linear similtaneous equations. However, it
was decided here to use instead an energy approach in combination witﬁ finite-
difference approximations. Such a procedure was for instance employed by

Stein in Ref. 2. Its advantages are that no derivatives of higher order than
second need to be approximated by finite differences, and that natural boundary

conditions are automatically satisfied and thus need not be specified.

According to Vol. 7 we have for the strain energy of the skin, stringers, and

rings:
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The strains €y ? ee

» and v <0 in Eq. (2.1) represent the changes of strains
in the mlddle surface of the skin, which is due to deformation at buckling. '

Similarly Xx * Xg ' Xxp represent the changes of curvature.

If the displacements of points in the middle surface in axial, tangential,

and radial directions respectively are denoted by u, v, and w we have

m
n

2
w w,x/z

X ’
_ 2
g ~ v’e + W + w’ /2
Yyg = u’e Vo + VoV,
(2.3)

Xx T Yxx

Xe = Y,00

Xx0 = 'W,xe

By use of equations (2.1), (2.2) and (2.3) the total potential energy can be

expressed in terms of the basic shell parameters and the displacement components.

Following classical linear stability theory, we assume that the displacements
Gnd therefore also the stress resultants) consist of two parts. One part corre-

sponds to the state at impending buckling, and the other represents infinitesimal



increments from that state. Expressing the strain-displacement relations in
terms of such prebuckling and incremental gquantities and substituting into
Eq. (2.1), we obtain the strain energy in the variational form:

_ 1,2 1 1 .b -
U = UO+5U+§5U+—53U+E_—,5U (c.’-*-)

- .

Since the structure under load is in equilibrium at impending buckling, the

first variation of the total potential energy must vanish:

86U = O

Since the incremental displacements are infinitesimal, we may drop all incre-

mental quantities higher than second order.

Therefore the expression for the strain energy reduces to two terms:
_ 1
U = U +=67T (2.5)

We assume that the effect of the prebuckling rotations on the magnitude of the
buckling load is negligible. Thus the first variation of the strains and
changes of curvature are expressed by the linear parts of Eas. (2.3) only. Then
the forms of the integrands in the two terms on the right side of Eq. (2.5) are
very similar. The first contains prebuckling displacements only (subscript 0),
and the second contains the same kind of terms with incremental displacements

(subscript B) and in addition three mixed terms. Thus:
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The quantities (Nx)o ) (Ne)o , and (Nxe)o represent membrane forces in the
prebuckling state. Due to the linearity of the prebuckling analysis it is
possible to let these membrane forces correspond to the distribution under a

unit load and to determine the critical value of the multiplier A .

The total potential energy of the loaded shell is the sum of the strain energy
U and the potentlal energy of the external forces. In a buckling analysis the
critical load is defined as the load at which the‘second variation of the total
potential energy achieves a relative minimum value of zero. For the loading
considered, the second variation of the total potential energy is equal to

1/2 62U . Therefore the critical load is determined by minimization with
respect to the incremental displacement components of the expression:

L/R Q/2

pv - [ [[F

o -Qf2" ; (x,8) ' X{‘? (X:e)} :] dx do (2.9)
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2

(v,0) = (NX)OW’X + (Ne)ow?e + 2(N

o)ov v o (2.10)
When the prebuckling loads (Nx)o , (Ne)O , and (Nxe)o are uniform, an

analytical solution is readily available, as has been shown in Vol. 7.

When the prebuckling loads are not uniformly distributed the governing partial
differential equations representing a minimum value of the functional in
Eq. (2.9) are not separable. Therefore, a finite-difference mesh is introduced.

The spacing between mesh points in the axial and circumferential directions are




respectively,
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where H 1s the total number of mesh points along the generator and K is

the total number of mesh points along the curved edges. If subscripts indi-
cate position in the axial and superscripts indicate position in tangential
direction, quantities (f) occurring in the energy expression and their deriva-

tives are substituted by

£ = (f)i
( ,x)i - %h (fi+l - fg-l)
(£ )0 = & (e3* - 2doh
0l = Ly - e el -
R e
(£ 5] = For (Fa = fi7 - £7 + 77)

Furthermore, the integrals are replaced by finite summations and-the energy is
expressed in terms of displacement components u, v, and w at the mesh points,
as discussed in the following section.

For definition of the boundary conditions fictitious mesh points are definéd
outside the panel. The load distribution in the prebuckling analysis is symmet-
rical about the plane 6 = O . Therefore only one-half of the panel needs to
be considered but the buckling pattern can be either symmetrical or anti-

symmetrical about this plane. The boundary conditions at 6 = O are




For symmetry For antisymmetry

Nke =0 Me = 0

Q = 0 N = 0
8 \
0 (2.12)

W,e = 0 u = 0

v = 0 W = 0

In both cases the first two conditions are automatically satisfied in a
buckling analysis based on the energy method and only the last two need to.
be enforced. At the panel edges the analysis here assumes simple support

conditions. Hence:

as x =0 and x = L/R at 8 = /2
NX = 0 Ne =0
Mx = 0 MG = 0
(2.13)
w = W =
v = u =

Here again the first two conditions in each of the two groups are automati-

cally satisfied. By use of boundary conditions specified here a number of

the displacement components may be eliminated from the energy expression. The
remaining values of the displacements at the meshpoints may be considered as

the generalized coordinates of the system. With boundary conditions as specified
by Eq. (2.13), the energy of the external forces vanishes and the total potential
energy of the system reduces to the strain energy. Hence minimization of the
strain energy with respect to the generalized coordinates signifies equilibrium.
The minimization procedure leads to a set of homogeneous linear simultaneous
equations. The lowest value of the load parameter, A , which allows 2 non-

trivial solution of this system corresponds to the critical load.

The quantities (Nx)o ) (Ne)o , and (Nxe)o in Eq. (2.7) could for instance be
obtained from the analysis presented in Volumes II-VI. However, it would be

impractical to read-in'such a large quantity of data, and thus it is necessary
to compute the prebuckling stress distribution internally. These computations

will here be based on the energy approach.

8
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; ‘ The prebuckling membrane forces will be determined by use of the equilibrium

E equations, which can be derived from the total potential energy of the system.
The energy consists of two parts, the strain energy as given by Uo in

Egs. (2.6) and (2.8) and the potential energy of the external forces. The
loads on the edges of the panel are shown in Fig. 1. They are assumed to be
symmetric about 6 = O . At the curved edges the external loads are axial

and at the straight edges only a shear force can be applied.

Nondimensional load parameters are introduced such that

~

N (8) = (1 - v2)/Et

§.(1 - vo)/Et

4

N, ()

N3(x>

1

1 - v9) /Bt

If the potential energy is nondimensionalized in the same way as the sirain

energy N
A Ry 2
wo= wellov) o } lu, (8) N, (8) + u,(6) W.,(8)] as
. > Jo o1 1 A A
EtR -y
L/R
+ i 2 ug(x) N3(x) dx (.1h)



» Uy s and u represent the axial displacements at x = 0,

_ where uy 3

x =L/R, and © = #2/2 respectively.

The finite-difference approximations which were employed in the buckling
analysis are used here such that the total potential energy is given in terms
of the displacement components at the mesh points. The boundary conditions are
identical to those used in the buckling enalysis except for the nonhomogeneous

conditions which identify the edge loading.

At 8 = O | [(Qe)0 = 0]
Ng = O
| : Ve = 0
| v = 0 (2.15)
At & = Q/2 [Né = 0]
[Me = 0]
W = 0
l-v _
5 (u’e + v’x) = N3(x)
At x = 0, L/R [Mx = 0]
= 0
v = 0
Nl(e) at x = 0
o u =
35X N,(8) at x = L/R

In each of these groups the conditions within brackets correspond to minimum
energy and will therefore be automatically satisfied. The external loads
represented by ﬁl(e) ) ﬁz(e) , and ﬁs(x) are not mutually independent but

must satisfy the conditions of static equilibrium.

10



' The boundary conditions and the condition of minimum energy constitute a
linear equation system with the displacements at the mesh points as unknowns.
After sblution of this system the prebuckling membrane forces in Eq. (2.9)

can be found by use of the strain-displacement relations Eqs. (2.3) and Hooke's
i Law.

11



Section 3

METHOD OF NUMERICAL ANALYSIS

In connection with the energy formulation of the previous section, we introduced
a two-dimensional mesh net of displacement components uw , v, and w with
mesh lines parallel to the axial and circumferential coordinates (x and 6). In an
example below (Figure 2)one-half of a cylindrical panel is covered by a rectangu-
lar mesh with uniform spacings h and k in the x and © directions.

1 2 3 L 5 Column'

Row !

L @-- Fig. 2

I t ! | |
6 @--0—-0--0—-@
In this example, rows 1 and 6 and column 1 consist entirely of fictitious
points; rows 2 and 5 are the boundaries x = 0 and x = L/R respectively;
column 2 is the boundary 6 = —Q/2 ; column 5 represents a plane of symmetry

or antisymmetry at 6 = O .

Two auxiliary functions DXi and Drj are defined as follows:

O if 151 or 1 =zH

DX, = 1/2 if i =2 or i=H-1
1 if 2<i <H-1
(3.1)
0 if j<1 or j=zK+1
Ty = 1/2 if j=2 or §j =K

1 if 2< 3 <K

There H and K are the total numbers of rows and columns respectively in

the mesh covering.
12



An approximation of the energy is obtained through replacement of the integra-

tion in Eq. (2.9) by finite summations:

= hk 57 }Z DX, DI, (¢f( 3;’ e‘)) | (3.2)

i=2 j=2 dJ

The values of t; and y in terms of the displacement components u , v , and
w are determined from the finite difference Eq. (2.11). Hence U becomes a
rational function of the discrete variables ug ) vi and wg (see Eq. 2.12).

Minimization of U then leads to the linear algebraic system:

L E

aui i=1, H

-~ jJ=1, K

9_1‘_]3_:0 (3'3)
avi

U .,

aw?

Rearrangement of the finite summation of Eq. (3.2) gives

U = hk(Ul KU2)
where
(] ¥ Vv,

U, = 2 EDX.DFI‘.J
1 . , 17757 (x,.8))

i=2  j=2 17

H-1 ? (3-4)
Up = .>4 2. PPty T (e )

i=a J=2 1

After a straightforward but lengthy calculation, the equations (3.3) can be

defined and are shown in Table I.

In order to utilize the iterative methods described in Vol. I, a two-line
ordering of the dependent variables u , v , and w is adopted. The order

of the mesh stations is shown in Fig. 3.

13
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The three unknown displacement varisbles at each mesh station are assigned
successive positions in the overall system. " The totality of displacement
unknowns in each successive pair of mesh rows then constitutes a block of
unknowns. When the expressions aUl/aui s aUl/avg s aul/awi are listed in the
same order, a banded matrix A in block tri-diagonal form is obtained. In a
similar manner, the expressions BUg/aug s aU2/avi » aUé/awg lead to a rather

sparse matrix B with the same form as A

The displacement boundary conditions required for the buckling problem can be
introduced without difficulty resulting in a slight modification of the A and
B matrices. The linear system (3.3) can now be expressed as a matrix eigen-

value problem
(A -AB)X = O (3.5)
wvhere X is a vector of displacement components u , v and w . The least

value of A for which Fgs. (3.5) can be satisfied corresponds to the critical

load.

1h



The solution of Eq. (3.5) poses great difficulties when a large number of
equations are involved. Preferred methods for the solution of the general
eigenvalue problem of symmetric matrices, such as the Givens or Householder
reductions (Ref. 3), are not feasible in this case. The computational effort
required is prohibitive, primarily because the original banded form of the
matrices is not retained throughout the computation. Fortunately, only the
minimum eigenvalue of (3.5) is required for the buckling problem. Under these

circumstances there are two approaches which can be considered feasible:

Define the function f(z) by f(z) = Det (A - zB)

Since the eigenvalues of (3.5) are the zeros of f(z), iterative techniques
for obtaining the roots of functions can be applied. The main computational
effort is the repeated calculation of the determinant of a large matrix.
Such methods are often useful for numerical exploration of the eigenvalue
distribution and can be used to obtain particular eigenvalues.  However, un-
less close estimates of the eigenvalues are available, the cost may be

excessive.

The power iteration (Ref. 4), on the other hand, can be readily adapted to
obtain the minimum eigenvalue of (3.5). Furthermore, the computations can be
carried out in a manner which takes advantage of the sparseness of the A and
B matrices. The power iteration for any matrix M is defined by

Xl = MKO

(3.6)
= MX

i+l i
The iterates can also be written in the form
X, = MX
i o
Based on the properties of high powers of matrices, it can be shown that the

iteration (3.6) converges to the dominant eigenvector of M when the corre-

sponding eigenvalue is real and not multiple. This principle can be used to

15



obtain an iteration which converges to the minimum eigenvector of (3.5).
Suppose '
AX = ABX

Then if A is non-singular,

A"lBx = 1/AX (3.7)
Thus X 1is an eigenvector of the matrix A_lB and the eigenvalues of (3.7)
are the reciprocals of the eigenvalues of (3.5). The power iteration can
therefore be applied to obtain the dominant eigenvector of A_lB which
corresponds to the minimum eigenvalue of (3.5). The resulting iteration is
defined by

AXl = BXO

(3.8)

AXi+l - BXi

Each step in this iteration requires the solution of a large linear system,
AX =Y . The two-line cyclic iterative methods described in Volume I, Section 3
can be efficiently applied to this problem. A significant acceleration of the

povwer iterations (3.8) can often be achieved by a shift of the eigenvalues.

ILet AX = ABX , and let p be a scalar. Then

(A - pB)X = AX - pBX = (A - p)BX
or (A - PB)X = uBX (3.9)
where
W = A-D

Thus the eigenvectors of (3.9) are the same as those of (3.8) and the eigen-

values © have simply undergone a translation by the scalar p

16



The corresponding power iteration now takes the form

(A - pB)xl = BX,
(3.10)

(A - pB)X, ., = BX

If p 1is less than but reasonably close to the lowest eigenvalue, A, con-

b

vergence may be attained in two or three iterations.

The solution of the prebuckling stress distribution will also be obtained by
use of a two-dimensional finite difference mesh. ZFortunately much of the.
numerical analysis of this problem can be based on the mathematical apparatus

presented in connection with the buckling problem.

The potential energy of a cylindrical panel consists of two parts, the internal
strain energy given in Egs. (2.6)-(2.8) and the potential energy of the

external forces given in Eq. (2.14). An approximation for the strain energy

: Ub is already available from Eq. (3.L4)

H=1 X ‘;z-
UO = hkUl = hk z DXi DTJ (xl e')

In a similar manner, an approximation for the potential energy of the exterral

forces, W, can be obtained by use of finite-difference approximations and
finite summations. .
W= MW, K 4 hw3 (3.11)
where
' J
= DTN, (6.)u
W i J l( J) 2
=2
K ,
S J
Wy F Z DL W,(0 gy (3.12)
J=2
H-1 5
w3 = ZDX]._NB(Xi)ui
i=2



The minimization of the total energy V produces a linear equation system

which must be solved for the unknown displacements

QYE =0 , 923 =0 . A (3.13)
aul ou; aw?
i i i
where
vV = hkUl + le + kW2 + hW3

The expressions for the partial derivative of Ul with respect to the dis-

placement unknowns have already been given in Table I.

The complete system of linear equations for the prebuckling problem is obtained

through addition of

— = IDT.N 9.
J l( J)

1]

rijg(ej) (3.14)

|

DXiN3(Xi)

All other partials of W are zero. If the ordering of equations and unknowns
described previously for the buckling problem is followed, we obtain a matrix
equation .
CX = ¥ (3.15)

The matrix C is a banded block tri-diagonal matrix which differs from the

matrix A of equation (3.5) only where modifications have been made to provide

for the different boundary conditions.

18



~system (3.15). The subroutines used to solve the system AXi+

Y 1is a vector of constant terms obtained primarily from the partial deriva-
tives (3.14) but also including some terms derived from the non-homogeneous
boundary conditions. The solution of (3.15) can be efficiently obtained by
using a two-line cyclic iterative method as described in Volume I. It should
be noted that little additional programming effort is required to solve the

= BX, for the
1 i
buckling problem can be used with only minor changes to solve CX =Y since

C and A have identical forms and differ in only a few terms.

When the displacement components u, v and w have been found, the prebuckling
stress distribution can be easily computed using finite difference approxima-

tions for the derivatives in the equations

N = @y u 4 v(v26 + W) - NV

Ny = ah(v’e + W)+ vu - @ oo (3.16)
_ 1 -v

Nxe, - 2 (u)e * V:X)

19
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